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L. Introduction

Two groups of heavy-ion beam pulses are to be transported from an
induction linear accelerator to a target in an inertial fusion power -
plant. A group of twenty prepulses arrives first, emerging at lower
energy upstream from the linac exit; the second group, of forty main
pulses, have full energy. For definiteness we use numerical values
for these beams developed by Wayne Meier; both beams consist of
singly charged ions with mass number 200, having prepulse and
main pulse energies of 3 GeV and 4 Gev, respectively.

II. The Approach to a Cone of Final-focus Arrays
Each group of beams is divided into two subgroups which approach

the target from opposite directions. The final approach of each beam
is along the straight axis of a final focusing array of quadrupole

magnets, A single array can be represented as shown:
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The length d of the array has been set by Meier at 25 meters. We.
take the distance from the downstream surface of the last magnet to
the target to be 5 m. The main-pulse beams approaching the target
from one side will have their axes distributed on the surface of an
outer cone whose half-angle 6 is important because it determines the
maximum transverse dimension of the bundle of beams. The axes of
the prepulse beams will lie on the surface of a cone coaxial with the

first one, whose half-angle is smaller because there are fewer
prepulse beams.
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All the beams of each group must have axes on the same cone,
because if not they will have different path lengths to the target
from 'the place where they diverge from the tight bundle in which
they have been transported from the linac. The design is sénsitive to
the transverse dimension of the final quadrupole focusing magnets.
We assume that these magnets are square in cross section with side
s. The numerical value of s is important because it fixes the angle 6
of the main-pulse cone, and therefore the maximum radius of the
array of beams in the region upstream from the target, as well as the
length of this region. For evaluating these dependences it is useful to
develop expressions for the annular packing of N identical squares of
side s; they are given here, with symbols defined on the sketch.

v=/N; cotge = 2+coty;a=(s/2)/siny; b=(s/2)/sin¢;
c=acosy=(s/2) coty;
d=bcos¢ = (s/2.) éot &.
The radial distance from the central point to the center of a square is
r = (s/2) (coty+1) = (s/2) (cot¢-1).

If twenty beams are to have this configuration, y =99, ¢=6.8599,
and r = 3.657 s.
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The surfaces of these squares must be tilted to face the target; we
will assume that this rotation of each face is about an axis through
its center in its plane and normal to r. The half-angle 8 of the cone

containing all the centers is then the sine of r/(5 m).
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The subgroup of main-pulse beams must be separated so that each
can approach the target along its own line. We assume that each of
them starts from the snug transport bundle in the plane of its final
approach, at the same small radius e from the main axis. [These
conditions are not necessarily exact because they depend on the
arrangement of the twenty main-pulse beams and the ten prepulse
beams in their bundles as they approach the target region, but
corrections for their errors may be regarded as fine tuning to be
worked out later.] We assume, with Meier, that the curved paths are
circular arcs with radius p determined by bending field elements of
field B having occupancy fraction v, giving a mean bending field B
= Bom ; p = p/Bq with p and q the ion momentum and charge, Meier
has taken the values Bg = 4 Tesla and n = 0.4, so that B = 1.6 T. For
the main-pulse beams p = 80.9 m and for prepulse beams p =70.1 m.
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Using the symbols defined on the figure, the geometrical relations
are:

sin & = 5r/d ; t‘=dsiri8 +p(l-cos8);
¢=cos1[1-(te)/2p]; h= p(2siny +sind)+ 5rcoto .
The path length in this region exceeds h by the amount
Ap=d + p(29p+6) -h =d(1-cos6) +p(2p+8-2s8iny - sinf ).

Some values illustrating the dependences of the transverse and
longitudinal dimensions t And h on quadrupole magnet size s are
tabulated here, using e = 2.55 s:

s (m) 8(deg)  t(m) p(deg)  h(m) Ap (m)
0.6 26.0 19.2 27.0 1314 4.0
0.7 30.8 24.2 30.5 141.3 9.6
0.8 35.8 29.9 341 158.3 13.5
0.9 41.2 36.5 380 171.7 17.9

For our design we adopt s = 0.7 m, s0 that t = 24.2 m, h = 141.3 m,
and Ap=9.6 m.

The ten prepulse beams can be less crowded. We use asterisks for
their symbols. If they are pushed to the center as closely as possible,

leading to touching squares, the analysis above gives %= 180, ¢$*=
11.149, a*/s = 1.618, and r* = 2,039 s. Thus with our selected value
of s = 0.7 m, the radius to the beam centers is r* ='1.43 m and the

prepulse cone half-angle is 16.60. On the other hand, if these beams
are pushed out as far as possible, so as to touch the outer array of

main-pulse beams, their value b* = (s/2)/sin ¢ will be close to ¢ =
(s/2) cot 99, so that ¢* = 9.110, * = cot1(cot ¢-2) = 13.289, and the
centers are at r* = (s/2)(cot ¢'- 1) = 2.62 s = 1.83 m, and the prepulse
cone half-angle is 21.590. For our design we adopt the prepulse cone
half-angle value 8* = 200,

The radius of curvature in the postulated bending fields needed to
bring the prepulses to the final focus scales with momentum, and we
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may assume that the same scaling applies to the paths in the final
quadrupole arrays, so that d* = 0.8674 x 25 m = 21.7 m. The factor
0.8674 is the relativistic value of the momentum ratio, which is not
exactly the nonrelativistic ratio (3/4)1/2 = 0.8660. Using p* = 70.1 m
and e* = 1.6 s = 1.1 m, we find the values t* = 11.6 m, h* = 102.4 m,
and Ap* = 3.2 m. '

IIL. Main Pulse Two-sided Ilumination

The configuration of minimum path length leading the two main-
- pulse beam bundles to opposite sides of the target is shown in the
following figure, with p the smallest practical radius of curvature
determined as above, and h the length defined in the preceding
figure. The total path length from the linac exit to the target is

P=3n/2)p+ h + g + Ap, butg = h -p, sothat
P={(3a/2)-1]p + 2Zh + 4p.

For the parameters chosen here, P = 300.3 + 282.6 + 9.6 = 592.5 m.
This distance is several times too. long for pure free drift
incorporating longitudinal compression of beams having properties
required by Meier's parameters. The reason is that the bunch
compression factor and the drift distance are interconnected by a
parameter which depends on bunch properties, as we will explain in
a later section below.




IV. Prepulse Path Parameters

The prepulse beams are extracted from the linac upstream from its
exit by a distance taken by Meier to be 500 m, corresponding to an
average accelerating gradient in the linac of (4 - 3) GV/(500 m) = 2
MV/m. Nonrelativistically, a pulse requires a time t = 2D/(v] + v2) to
traverse a distance D with constant acceleration, where vi and v2
are the starting and ending velocities. [The relatvistic relation is ¢ =
(D/OBY)2 - BY)11/(v2 - Y1), with B = v/c and ¢ = light speed;
however, for small velocities this relation differs from the
nonrelativistic one by a factor [1 + O(B2 - B1)3], with the correction

term of order 10 -3 for these main-pulse beams.] This time for a
main-pulse beam is 8.75 microsec. The prepulse time to pass
alongside the linac is (500 m)/v1 = 9.41 microsec. In going from the
linac exit to the target along the path of 592.5 m indicated above, a
main pulse takes additional time (592.5 m)/v2 = 9.68 microsec, for a
total time of 18.43 microsec from where the prepulses leave the
linac. (The velocities at 3 GeV and 4 GeV are v1 = 5.316 x 107 m/s

and v2 = 6.114 x 107 m/s.)

The prepulses are required to arrive at the target about 30 nanosec
earlier than the main pulses, but this time corresponds to a path
difference of order 2 m, very small compared with paths of order
600 m. Therefore we neglect this small time difference at this stage;
it is to be considered in the future for fine tuning. The prepulse
external time of flight is then to be 18.43 microsec, corresponding to
a path length of 979.7 m at vi.

The difference h - h* = 141.3 - 102.4 = 38.9 m is advantageous in
that the positions at which the tight main-pulse and prepulse beam
bundles start to be separated is about 130 feet, which will be
welcome in implementing the magnet systems to bring about the
separation. Similarly, the difference t- t*=24.2 -11.6 = 12.6 m
shows that only one of the two expanded bundles will have a large
maximum radius to a beam center, the other fitting inside it with a
radius smaller by over 40 feet.

If the prepulse beams were to proceed parallel to the linac for the
full 500 m after emerging, and enough further along the same line to
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commence a path scaled from that of the main-pulse beams, their
total path length from where they leave the linac would be

P* =500 + 3(p-p*) + (3w/2)p* + h* + g* + Ap*
with g* = h* - p*, giving
- P*=500+32.4+260.2 +204.8 +3.2= 1000.6 m,
which exceeds the required length of 979.7 m by 20.9 m. Therefore
this bundle of beams must "cut across the corner" to give a path

shorter by that amount. A simple way to accomplish this is shown in
the following sketch. '
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For this geometry

L sin %+ 2p* (1 -'cosy) =~:h*+ﬁ*,
Lcosy +2p*siny =500+3p — p*-x,

P =x+L+[2x+ (R/2)] p= +h*+Ap*.
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The numerical values are p* = 70.1 m, p = 80.9 m, h* = 102.4 m,
Ap* = 3.2 m, and P* = 979.7 m. The solution of these equations is:

x=66.00, L=98.0m, x=504.6 m,

showing that the prepulse beams travel just past the linac exit before
beginning their first deflection.

V. Connection Between Compression and Distance in Free Drift

For idealized free drift compression of a bunch with parabolic charge
variation, having negligible longitudinal emittance, one assumes that
its longitudinal self-field is proportional to the gradient of
charge/length and thus is linear in distance along the bunch so
that the distribution remains parabolic. The envelope equation for
variation of bunch length L(t) with time under these assumptions is

d2L/de2 = (12 g ge Q)/(4 nep vS Mol2) (MKS)

in which g is a geometric factor (taken by Meier to be 1.234), Q is
the total charge in the bunch, ge and Mg are ion charge and rest

mass, and vy is the relativistic factor M/Mog.
It is convenient to introduce dimensionless units. Let L(t)/Lo = r*,
the ratio of length to its initial value, and let t/T* = u, with the time
unit T* given by

T*2 = (4n5 7> Molo3)/(24 g qe Q.
[It is important to note that T* is not the same as the time unit T to

be introduced later in analyzing regions with external compressive
fields.] Then the envelope equation becomes

d2r*/du? = 1/(2r*2).
The first integral of this equation is

- (dr*/du)2 = [(dr*/du)o]? + 1 - (1/1%),
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with the subscript o denoting an initial value. Bvaluating at the end
of compression, dr*/du = 0 and 1/r* = C, the maximum compression
attained. Thus we have the simple result

C = [(dr*/du)o]? + 1,
or C = (voT*/Lo)2(Avo/vo)2 + 1.

Returning to the first integral for arbitrary r*, it can be integrated
again by separation of variables:

du =dr*/[C - (1/r*)]1/2,
uF = C - 372§[(c(Cc-1)]1/2 + tanh -1 [(C-1)/C]11/2 } .

Here uf is the dimensionless time at full compression. The drift
distance D to maximum compression is given by

D=VOT*U.F.

The function up(C) is tabulated and graphed below.

C UF 2(c-1)1/2 C uf c-1/2
1.0001  0.02000 0.02000 6 0.4778

1.001 0.0632  0.0632 8  0.4059

1.01 0.1974  0.0200 10 0.3575

1.1 0.5572  0.6325 12 03224

1.5 ©0.8298 14 0.2956  0.2673
1.635 0.8366 16 0.2743  0.2500
1.8 0.8301 18 0.2569  0.2357
2 0.8116 20 0.2423  0.2236
3 0.6920 25 02143  0.2000
4 0.5976 30 0.1940  0.1826

The function uF attains a maximum value of 0.8360 at C = 1.635. For
C>> 1, itapproaches C-1/2 while for C - 1 very small it approaches
2(C-1)1/2 | Both of these limiting regimes will be of interest to us.
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Large Compressions: ‘

D - voT*/Cl/2 | C— (voT*/Lo)(Avo/vo) and

D = Lo/(Avo/Vo) -

Using the expressions above, D can be written as

D = [Lo/(Avo/vo)] (1 + f¢)
in which the correction term is
fe = C-1 {[(C-1)/C]1/2 tanh-1 [(C-1)/C]}/2 -1}

For all compressions larger than about a factor 3 this correction term
is less than a few percent, so the drift is moderately well

approximated by

D = Lo/(Avo/vo) ,
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corresponding to a linear change in L with distance approximately
down to zero at the actual position of maximum compression.

Very Small Compressions

For C-1 very small, D —2voT* (C-1)1/2, (C-1)1/2 = (voT*/Lo)(Avo/Vo);
D - [Z(VQT*)Z/ Lo](AVo/ Vo) .

For any particular bunch T*2 is proportional to Lo3 , so D is proportional
to (voLo)2(Ave/ve). This result can be understood as a limiting case of
constant "length" deceleration;

(T*2/10)d2L/dt2 = (1/2)(Lo/L)2 ,
and if L is replaced by Lo on the right side, d2L/dsZ = (1/2)Lo(voT*)Z;
dL/ds = - ({Ave/vo) + (1/2)L08/(V0T*)2 ’

a linear decrease of dL/ds with distance, as opposed to a constant inward
dL/ds for the large-C case. The distance to dL/ds =0 is

D ~ 2[(voT*)2/Lo] (Avo/vo) .

We will make use of the large-C results in the regions just upstream of
the target for both main pulse and prepulse bunches; the small-C results
will be useful in the regions downstream from the points of exit from the
linac.

We now return to demonstrating that distances such as the 600 m
developed for main-pulse bunches from the linac to the target is much
too long to be reached by free drift incorporating longitudinal
compression. because the velocity tilt appears in both the approximate
relation D = Lo/(Avo/vo) and in (C-1)1/2 = (voT*/Lo) (Avo/Vo) , it can
be eliminated. We are interested here in compressions large enough that
we may roughly approximnate C-1 by C, giving the important
- approximate result

CD2 =~ (dneo Y Movollod)/(24gqe Q) .
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For the main-pulse bunches in Meier's system these parameters are:

y=1.02144, ¥5=1.112, 4meo= 1/(9 x 109)
Mo =200mp = 3.321x10"25 kg -
vo = 6.114 x 107 m/sec

-  g=1.234
ge = 1.6 x 10 ~19 Coul
Q= 26.8 x 10 - Coul.

If we take Lo to be about 10 m the value of the product CDZ is about
1.2 x 106 m2. Therefore if a compression factor of order 20 is to be

| attained the drift distance must be less than about 240 m.

Correspondingly, for a drift distance of 600 m the compression factor
cannot exceed about 3.3. To meet the requirements of this system we
must introduce ramped velocity-tile-changing external electric fields
along significant portions of the path. Before considering how this
should be done we display a sketch (roughly to scale) of both groups
of beams on one side, with the main-pulse beams shown in dashed
lines. '
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VII. Distances and Pulse Lengths With External Compression Fields

Because a free drift distance greater than about 240 m is
incompatible with a compression factor in that distance of order 20
for beam pulses with Meier's parameters, there must be regions
containing external compressing fields. A simple region of this kind

contains an external longitudinal field which (when averaged over
distance along the transport line) has the form

Ez(€Xt) = - AE o(L) (2z/1)

with z the distance from the center of a bunch of (varying) length L.
For simplicity we assume here that AEq is a constant within a region.
In such a region the idealized envelope equation for a parabolic
bunch is

d2L/dt2 = - (2 qe AEp)/(¥¥Mpg) + (12 g qe Q)/(4 ng 15 MplL2),
the first term on the right producing the compressive acceleration.
As before, we introduce dimensionless variables. Let L(t)/Lp =r, as

before, and let t/T = w, with the new time unit T (not the same as T*
defined before) given by

= (¥ Mo Lo)/(4 ge AEo) .
In addition we define a dimensionless parameter
= (6 g Q)/(4np y2LoZ AFo) .
The envelope equation becomes
d2r/dw2 = (1/2)[ (R/r2)-1].
Its first integral is
(dr/dw)2 = (dr/dw)2o + (1-1)(r-R)/r.

We abbreviate the frequently occurring dimensionless first
derivative by s;

s=dr/dw, so=(dr/dw)o.
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If we evaluate the first integral at the time wf of maximum

compression, where s = 0 and r = rf (f = final) = 1/C (with C the

compression factor), we have a relation connecting so and rf :
(1-rp)(rf -R)Y/1f = so2.

The equation can be integrated again by separation of variables;

dw = {r/[(1 t)(r - R) + so2r]}}/2 dr.

The denominator inside the square root may be written in factored
form;

(1-0)(r-R) +s02r = -R+Ar-rZ = (a-r)(r-b),
in which
A =1+R+so2, a=[A+(A2-4R)1/2] = 2R/[A - (A2-4R)1/2], b=R/a.
If weset u=r/a and p=>b/a,
dw = fau/[(1 ~u)(u-p)}/2 du,

which gives a standard form of an elliptic integral, made evident by
the substitutions

u=1-(1-p)sin2g, 1-p = k2.
Then
w(r) = 2al/2 f (1-k2sin? 0)1/2 do
= 2al/2 [E(a(r), k) - E(go, W1,
in which
sin e(r) = [1 - (r/a)]1/2/k ,

sin g = [1 - (1/2)]11/2/k .
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Finally, the drift distance to the position where L(t) = rLo is
D = voT w(r).

It is convenient to note that

so = (dr/dw)o = (T/Lo)(dL/dt)o = (voT/Lo){(Avo/ Vo) ,
and of course the fractional velocity tilt at any stage is given by

s = dr/dw = (voT/Lo){Av/vp) .

-

A particularly simple case is presented if the initial velocity tilt is
zero. Then '

A=1+R, a=1, b=R, p=R,
sin @o=0, E(Qio,k) =0, and
sin a(r) = [(1-1)/1-R)J1/2 .

In that special case rf =R, so that ¢ = of = /2, and E(ef,k) is the
complete elliptic integral E(k).

VIII. Achieving the Required Final Compression

We consider first the main-beam compression. We assume there to
be no external compression along the final region of length h = 141.3
m. We label the path intervals and record their lengths:

A-B=127.1m=(r/2)p (quarter-circle)
B-C = 60.4m =h-p

C-D =2542m = np (half-circle)

D - T = 141.3 m = (final region)
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We will work backward from the target T, where Meier's design
requires LT = 0.489 m; the velocity tilt is to be zero there. The
formulas given earlier may be used to determine the starting bunch
length LD for which the free drift region D-T has the desired length
141.3 m; the resultis Lp = 5.164 m, so that C=10.56. The velocity
tilt at D is found to be 0.0378.

Some idea of the accuracy of the estimate quoted earlier for the
large-compression limit can be gained by evaluating it here; the drift
distance is approximately the initial bunch length divided by the tilt,
giving 136.6 m rather than the correct value of 141.3 m, an
underestimate of over 3%.

The free drift region could be extended upstream from D to a
position farther than141.3 m from the target; the result would be to
increase the bunch length and the tilt further. This change is
undesirable because it would require a larger external compressing
field further upstream over a greater distance to produce the larger
tit.

In the same way we consider the free-drift prepulse compression on
approaching the target. We label the path intervals and record their
lengths:

S-A = 504 m = path alongside the linac

A-B = 80.7m =660 withp=70.1m

B-C = 98 m = straight drift

C-D= 80.7 m =660 like A-B n

D-E=110.1m= 900

E-T = 102.4 m = final region

S

i

For a prepulse duration on target of 20 nanoseconds and velocity vo
~ 5.316 x 107 m/s, the final bunch length LT is 1.063 m.
Considerations like those for main-pulse bunches provide the values
ILE =3.364m, C=3.135, and AVE/vo = 0.0267 corresponding to the
length LE-T = 102.4 m. Just as for the main pulses, the free-drift
region should not be extended further upstream from E.
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Next we consider external compression of the main-pulse bunches.
Upstream from D the distance A-B + B-C + C-D = 441.7 m is available
in which to apply the external field needed to reduce the bunch
length to 5.164 m. (We are assuming that a larger bunch length, of
order 10 m, is more appropriate at the linac exit.) Because we have
fixed both the bunch length and tilt at D, there are three remaining
parameters. These are (1) the magnitude AEp of the external field
(assumed constant in the region); (2) the distance upstream from D to
point > will call Y) where the extemal field commences;
and (3) the bunch length T7 at Y Of, equivalently, the rato T =
LD/Ly. If we imagine that the pomt Y is where there is no velocity
tilt, the calculation from Y to D is facilitated by the simplification
pointed out above, with a = 1, b = p = R, and sin ¢ = 0. For any
assumed value of the bunch length Ly (or, equivalently, of r) at Y
there will be a corresponding value of AEg that generates the
required tilt at D, and in addition defines the distance Y-D.

The three parameters r, AEg, and distance dy-D are related by two
equations. One of these connects the velocity tilts at D and Y with r
and the parameters LD, vo, T, and R. As just stated, the tilt at D and
the length LD are regarded as fixed by the considerations above, but
this relation is complicated by the dependence of both T and R on AEg
and on r (through Ly = Lp/r). We will assume that the tilt vanishes
at Y, to take advantage of the simplest form of the analysis. Then the
equation takes the form

(AvD/Vo) = [(LD/1)/(voD)I[(1-1)(r-R)/111/2 .

Although T depends on fractional powers of r and AEq, and R depends
on different integral powers, it turns out (rather surprisingly) that a
simple equation can be found for AEg as a function of r and the many
constants; it is

= (t/(1-1) [Vo(PMo/4qe)(AvD/ vo)l2/LD + rl(6gQ)/(4=s2)]/LD?

From this relation one finds the function AEqp(r), and thence the
functions T(r) and R(r) needed to evaluate the distance dy-D(r), so

~ that r labels a one-parameter family of consistent values in the

external-compression region.
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The remaining parameter, the distance between D and Y, is found
from the relation involving the elliptic integrals, only one of which
enters into the simplest form of analysis we are using here. The
results for the main-pulse parameters are tabulated and graphed

below.
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~ Notice that a compressive field less than about 3.7 x 105 V/m is too

small to achieve the corresponding bunch length of about 13.5 m
within the available distance of 440 m.

Assuming that the strategy of the procedure here is appropriate,
there is a design decision that will depend on engineering
considerations; 150 m of 106 V/m is to be compared with 400 m of
4 x 105 V/m as to cost and technical difficulty. More generally, it is
seen that for these bunches large compressive fields over long
distances are required to produce a 3.8% velocity tilt.

We will proceed by assuming that a lower external field over a
longer distance is preferred. To produce a specific design we
arbitrarily choose 5 x 105 V/m over a distance of 320 m. This choice
means that point Y is essentially at point B, the end of the first 900
bend. The remaining task for the main-pulse bunches is to transport
them over a distance A - B = 127.1 m from the linac exit at A to
point B, where they are to have length LB = 11.5 m and zero velocity
tilt. The simplest procedure is to require the bunches emerging from
the linac to have almost the same length and a very small tlt, which
is gradually brought to zero at point C after a free drift.

To make this quantitative we employ the notation used earlier to

explain the connection between compression, tilt, and distance in free
drift. Here we will be in the limit where C - 1 is very small.

d2r*/du? = 1/(2r*2),

r* = L(u)/LA , us= t/T*.

“With no tlt at B, the initial tilt is given by

AVA/Vo = (LA/voT*)(C - 1)1/2
and the distance to B is
dA-B = voT* ur(C) = 127.1m

with C = LA/LB. Using expressions for T* and uf given earlier,



20

dA-B = vol(4neayS Mo)/(24 g qe Q)11/21g3/2[C3/2 up(Q)] ;
numerically,
C3/2 yp(C) = [127.1/(34.75x(115)3/2] = 0.0938
= [c(c-1)11/2 + tanh1[(c-1)/C1V/2.

Solving numerically for C, C = 1.0022, so that LA and LB differ by
only 3 cm, and voT* = 135.5 m. The tilt required at A is the very
small value 0.0040. '

It is realized that this scheme places the burden of emitting bunches
with length about 11.5 m and negligible tilt on the accelerating
system within the linac, but its accelerating fields are specified to
average 2 x 106 V/m over the last 500 meters, so the waveform
shaping required to meet this condition is a small perturbation.

It may seem surprising that a bunch can drift over 100 m with
negligible velocity tilt and change its length so little, but this is the .
calculated behavior of an idealized bunch in idealized surroundings
characterized by the single parameter g, in the limit of small
compression described above in detail. To maintain real bunch
properties close to those calculated here will require monitoring
systems and carefully applied correcting impulses similar in
character to those needed in the linac to control momentum spread
and bunch length there,

The prepulse bunches will also require external compression.
Upstream from E the distance A-B + B-C + C-D + D-E = 80.7 + 98.0 +
80.7 + 110.1 = 369.5 m, considerably less than the corresponding
distance of 441.7 m for main-pulse bunches. [However, this distance
could be further increased by about 500 m if the portion of the
prepulse path running along outside the linac were to be included.]
Using all of it will require the smallest external field, but if this field
is unnecessarily low a shorter distance may be less costly. As before,
we assume no tilt at the start of this region beginning at a point Y.
For any assumed value of Ly there will be a corresponding value of

AEo that generates the required tilt at F, and in addition defines the
distance Y-F. Some illustrative values and a graph are given here:
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PREPULSE PARAMETERS

T Ly (m) AEo (V/m) DY-E (m)
025 13.46 1.47 x 105 675
0.35 9.61 2.29 x 102 440
0.45 7.48 3.36 x 105 290
0.55 6.12 | 4.83 x 105 200
0.65 5.18 7.05 x 103 130
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Here again we will have need of engineering and cost comsiderations
to determine the best choice of distance and compressive field. If we
use a distance of about 360 m a small field of about 2.8 x 105 V/m
will be needed, while if the field is 5 x 103 V/m, as chosen above for
the main-pulse beams, the distance will be about 190 m. We
arbitrarily make the latter choice so as to produce a specific design;
the point Y then coincides with point C, at the downstream end of
the slanted straight-drift prepulse path segment B-C. This means that
the prepulse bunches must travel from S where they leave the linac
a distance 504 + 81 + 98 = 683 m to arrive at C with no velocity tdlt
and a bunch length of 6.0 m.

To determine how this is to be accomplished we make a free-drift
calculation like that made above for the main-pulse bunches, using
the prepulse value of y and replacing LA by LS, LB by L¢, and 127
m by 683 m. The results are; compression factor C = 1.52; Lg=9.12
m; and Ave/ve = 0.0080 .

As for the main bunches, this solution is not unique, because a
different position for Y couild have been chosen.; however, it seems a
reasonable one imposing no difficult requirements. A requirement is
placed on the linac to produce bunches at 3 GeV with a specific
length, selected here as 9.12 m, and very small velocity tilt,

calculated to be 8.0 x 10-3. | :
IX. Tolerances

It is evident that this system requires very high precision in its
construction and operation. A few comments suffice to indicate the
needs. The relative pulse arrival times at the target must
presumably be accurate with a tolerable error of a few nanoseconds;
at a velocity near 6 x 107 m/s this corresponds to a path length error
of 10 - 20 cm over a path of order 800 m, a precision of order 104,
A defect in the length of all main-pulse lines could be accomodated
by a corresponding adjustment of the pellet injection time, but
differing path-length errors in prepulse and main-pulse lines, or
among the many lines in each group, are unacceptable.

The path length difference due to a very small error in a bending
field is significant. For the main-pulse lines the total principal
bending angle is 3z/2 in a radius Of 80 m; to hold the path length
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change to about 10 ¢cm requires a tolerance AB/B of about 4 x 104,

This corresponds to a field error of 10-3 T in a field of 4 T, and refers
again to differences among the many lines, about 60 in number in
Meier's system.

Methods to detect, measure, and correct such errors, and to control
the lengths and shapes of non-idealized bunches in their real
environment, are not considered in the present discussion, nor are
the properties of transverse containment systems.

X. Thoughts on an Improved Design

The sensitivity of the scenario developed by Meier (based on a target
design due to Tabak and Callahan) to various changes is not known.
The dependence of the main-pulse cone angle at the target on the
number of main-pulse beams can be deduced from the analysis of
the packing of squares in an annulus given early in this report. The
numbers 20, 10, and 30 of beams are not particularly felicitous with
regard to snug packing for transport. For this reason a detailed plan
for separating and guiding the two groups of particles is not
presentéd here. Twelve beams, rather than ten, pack better, as a
four-by-four square array with corners omitted, and twenty-one
beams pack better in a five-by-five array without corners. For
convenient separation of the two groups of beams on approach to the
target it sould be desirable to havea well-packed array including all
beams, in which the prepulse beams are all near the axis and the
main=pulse beams are all outside. An array of 5 + 16 = 21 beams has
this property. The cost and complexity of the transport lines would
be significantly reduced if a smaller number of beams could be used.
However, the greatest benefit for beam transport would be realized
by development of a design for single-sided illumination of the
target. This benefit is detailed in the following section.
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XI. Comparison of the Present Design with One-sided Illumination

PRESENT DESIGN

Total path length of beams:
Main pulses: ~ 40x593m=23.7 km
Prepulses: 20x (480 +500) m = 19,6 km
Total: 43.3 km

Total path length in 1.6 T mean bending field:
Main pulses: 40x 511 m = 20.4 km
Prepulses: 20351 m= 70km
Total: 27.4 km

Total path length in 5 x 10° V/m ramped compressive field:
Main pulses: 40x320m =12.8 km
Prepulses: 20x190m= 3.8km
Total: 16.6 kin

These lengths may be contrasted with those estimated for a
hypothetical system using one-sided illumination. In order to make
a direct comparison I have assumed that each beam in the one-sided
system may have twice the current so that a total of twenty main-
pulse and ten prepulse beams suffice. [A different assumption would
‘require recalculating the cones of beam lines approaching the target
under arbitrary guidelines; some element of realism may be restored
to the comparison by multiplying the one-sided-illumination path
lengths by a factor between one and two.]

ONE-SIDED ILLUMINATION

Total path length:
Main pulses: 20x 151 m=3.0km
Prepulses: 10x (144 + 500) m = 6.4 km
Total: 9.4 km

Compare 9.4 (x 27) with 43.3 km in the present design.

Total path length in 1.6 T mean bending field:

Main pulses: 20x 130 =2.6 km
Prepulses: 10x80= 0.8 km
Total: 3.4 km

Compare 3.4 (x27) with 27.4 km in the present design.
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Total path length in réﬁnped compressive field:
Zero, |
In the hypothetical one-sided design the linac must produce main
pulses having exit length 5.16 m and tilt 3.8%, and prepulses having

exit length 3.4 m and tilt 2.7%, if these beams are to correspond with
the calculations of free drift to the target in the present design.

XIL. Summary
Main pulse beams (drawn for one side):

Position  x(m) y(m) L(m) Pathfrom A Av/vg
A 0 0 11.5 0 0.0040
B 80.9 80.9 11.5 127.1 0
C 80.9 141.3 187.5
D 242.7 141.3 5.13 441.7 0.0378
T 242.7 0 0.489 533.0 0
+ 9.6
=592.6

In B-D, AEg =5 x 105 V/m
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Prepulse Beams (drawn for one side) .
Position . x(m) y(m) L(m) Pathfrom A Path from S

S - 500 0 9.12 -504.6 0

A 4.6 0 0 504.6
B 68.6 41.6 80.7 585.3
C 108.5 131.1 6.00 178.7 683.3
D 172.6  172.7 2594 764.0
E 2427 102.6 3.36 369.5 814.1
T 2427 0 1.063 4769  976.5

+ 3.2 + 3.2
= 475.1 = 979.7 -

In C-E, AEg = 5.0x 105 V/m.

Av/Vo
0.0080

0.0267




